

Identification and Elimination of Yield Gaps in Oil Palm

Speaker: Thomas Fairhurst

Identification and Elimination of Yield Gaps in Oil Palm

Conferencista: Thomas Fairhurst

Definition of a 'yield gap'

• **Difference** between **site yield potential** (defined in fertilizer trials, best management practice blocks, literature).

and

- Actual yield.
- Can be measured as yield of fruit bunches or crude palm oil or palm products (crude palm plus kernel oil).
- May be due to different factors:
 - Poor crop recovery.
 - Nutritional deficiencies.
 - Poor agronomic management and pests and diseases.
 - Moisture stress.
- Can be measured at national, company, farm, block, soil type or planting material.

Yield gap analysis

- Is there a gap between actual yield and site yield potential?
- What are the causes of yield gaps?
- Each yield gap cause requires different remedial measures.
- Make a plan to eliminate identified yield gaps:
 - 'Yield Taking' (Yield Gap 5).
 - 'Yield Making' (Yield Gap 1, 2, 3 and 4).

GREPALMA - C//PAL III

'Yield Taking'

Getting the crop from the palms to the mill.

Logistics not agronomy. Immediate results.

Yield Gap 5

Yield Gap 5 due to incomplete crop recovery

Remedial action on crop recovery

Short term results from remedial action:

- 1. Review milling capacity, adequacy of transport system and labour supply, and field drainage (vehicle access).
- 2. Install adequate field access from mill to palm (roads, paths, pruning, drainage).
- 3. Implement tightly controlled ten day harvest intervals with zero crop loss.
- Implement the correct ripeness standard (≥5 loose fruit on the ground before bunch harvest).
- 5. Check fruit quality in field, at the ramp and in the lab.
- 6. Check mill losses.

'Yield Making'

Putting more fruit bunches onto the palms.

Agronomic skill required. Time lags of ≤4 years between implementation and results. Yield Gap 1, 2, 3 and 4.

24–28 months from flower to bunch!

Female flower

Fruit bunch

There are significant time lags between a stress event and its effect on yield

Jones, 1997

GREPALMA - C//PAL III

Starting point in a containing male and female flowers

Starting point

Stress event (e.g. drought, over-pruning or under-pruning, pest outbreak)

4-month stress event

GREPALMA - C//PAL III

Very young flowers become male and some female flowers abort

4-month stress event

12 months later there are a number of empty fronds at pre-emergence and from Frond 31–35. No stress this year!

12 months after 4-month stress event but no stress in current year

GREPALMA - C//PAL III

24 months after starting point empty fronds detected mid-crown.

24 months after annual 4-month stress event

Must think and plan for long term

Long term results from remedial action:

- Twenty five year plan (crop, field budget, capex plan).
- Plan based on reasonable price assumptions (CPO, labour, fertilizer fuel) and interest rates.
- Stress tested business model.
- Financial planning to cope with price peaks (store) and troughs (spend).
- Don't cut fertilizer!
- Investment capex related to price?
- Even James Fry struggles to predict the price accurately so don't try and guess the market!
- 'High yield producers' can weather low prices better the 'price guessers'!

Yield Gap 4 due to poor field practices

Verify that all field practices are being implemented correctly and cost-efficiently

- Drainage
- Ground cover management
- Pruning
- Abnormal palm removal
- Pest and disease early warning system
- Pest management
- Disease management
- Fertilizer programme implementation

Evaluate field **costs** with reference to field **standards**

		Field upkeep standards (audits)										
		Poo	or	Goo	d							
Field costs	High	Poor field sta high costs.	dards and ime lags!	Find ways to red maintain high	s and high costs. Ice costs and standards							
(USD/ha)	Low	Poor field stand costs. Inves improve	ards and low st in field ments	Good field standard The ultima	and low costs. te goal.							

- Field audits required to make a formal assessment of standards.
- Compare field standards with cost data.

Yield Gap 3 due to incorrect diagnosis

Verify that diagnostic work is being done properly and recommendations are correct

- Fertilizer recommendations are cost effective.
- Properly designed pest and disease early warning system.
- Appropriate integrated pest management practices.
- Appropriate integrated disease management practices.
- Proper standard operating procedures compiled and issued to all staff.
- Staff trained in the correct practices.
- Staff trained in basic oil palm physiology.

Fertilizer Planner™

- New software
- Interrogates data in OMP:
 - Leaf and soil analysis
 - Yield data
 - Field conditions
- Determines the least costly source of mineral fertilizers.
- Glass box not a black box (all assumptions declared and transparent)
- For more information, <u>agrisoft-systems.com</u>

Yield Gap 2 due to poor planting technique

Verify that the correct planting and replanting techniques are used

Long term results from remedial action:

- High quality seed source.
- Excellent nursery.
- Strict culling.
- Proper land preparation (drainage, cambered beds).
- Road system.

Yield Gap 1 due to moisture stress

Implement water management practices

Long term results from remedial action:

- Measure water stress
- Soil moisture conservation (use of mill residues, platforms, terraces, frond stacking).
- Investigate cost effectiveness of irrigation.
- If water supply is sufficient, consider irrigation.

No yield gaps --site yield potential achieved!

Field visits, armed with the facts!

Divisi	on: D	1-S01 F	ield	: De	squi	ite Bloo	:k: 1	002	2																							Printeo	d: 18-	-Sep-1
Area:	21.24	ha `	OP:	200	00	mYO	P: 7	,		Pa	m a	ge: 1	7 yr		Planti	ng ma	ateria	al: Av	vros+	-N ig			Dens	sity:		143.0	p/ha		See	dling age	e at plai	nting:	mt	
Land c	lass:	Paler	Palenque Previous land use: Potrero					Land clearing: Quir					Quimico -					eter:	m			DFH	DFH: 01/01/2004			: 42 1	42 mt							
Soil typ Topogi	oe: raphy:	Paler Planc	que			Soil te Soil a	extur icidit	re (o y sta	bs.): itus:	FA	a/Fa	1			Soil d	eficier	ncy s	coring	: N	F	þ	K	N	1g										
Draina	ge:	Buen	0			Erosi	on:			Lig	era				Soil c	onsv.	mea	s.:					Soil d	consv.	status:				Field	d Marker		Comer	cial	
Ground	d cover	cover: 0			Pruni	ng:									Harvester access: Bueno					Crop recovery:						Growth Marker:				Comercial				
		Pro	Production data						Inc	organ	rganic fertilizer inputs				[kg/p]			Crop residues [t/ha]	1			Leaf analysis [% DM,			mg/kg]; Deficiency scores						
Yr Age		Yie	ld	BW		BN HR		Ν		205	205 K2		М	MgO	I	В		EFB	6	Pome		Fib	r	Ν		Р		K		Mg		B P	CS P	PH SPF
	yr	Pot A t/ha t/ł	ct G na t	ap 'ha	kg		1	A I	۲ <i>ו</i>	A F	R /	A F	A	R	A	١	R	А	R	A	R	Α	R	L	Rc D	L	Rc E) L	Rc D	L	Rc D	L D c	m²	m p/ha
2017	17	30.0 10	.1 -1	9.9 2	28.0	3 22	0.4	41.	0 0.:	3 0.4	1.0	0 1.1		-	0.016	0.0	15							2.49	-	0.176	0.11	- 0.98	2.16 -	0.29 0.	09 - 3	3 -	50	139
2016	16	30.0 26	.6	3.4 2	24.9	8 26	0.2	2 0.	5 <mark>0</mark> .	1 0.1	0.3	3 0.9	0.1	0.1	0.030	0.0	30		-	-	-	-	40	2.45	0.31	0.156	0.08	0.98	2.02	0.30	2	2	41	139
2015	15	30.0 14	.0 -1	6.0 2	24.7		0.8	Β Ο.	8	-	- 0.0	6 0.6	0.2	0.1	0.036	0.0	36		-	-	-	87	-	2.57	0.39	0.171	0.11	0.98	1.83	0.32	1	2		
2014	14	30.0 24	.0	6.0	23.8		1.	51.	1 0.3	3	- 0.8	в.	0.1	-	0.029	0.0	20							2.72	0.43	0.150	0.10	0.90	2.01	0.32	1	1		

Complete, up-to-date history of each block's agronomic background on yield, fertilizer history, leaf analysis, vegetative growth and palms stand.

Cost of production (USD/t oil)

GREPALMA - C//PAL III

Some conclusions.....

- Significant yield gaps in Guatemala.
- Short term goal to eliminate crop losses (Yield Gap 4).
- Longer term goal to optimize field practices (Yield Gap 3).
- Make sure nutrient and pest and disease diagnosis and recommendations are appropriate and cost effective (Yield Gap 2).
- Raise high quality seeds in an excellent nursery and prepare land properly for new plantings (Yield Gap 1).
- Planters are price takers and field practice implementers.
- Triple bottom line benefit of yield intensification.

TCCL handbooks

- 20 box sets available at the conference.
- USD 125 per box set.

