

III CONGRESO PALMERO

GUATEMALA

C//PAL III

2 AL 4 DE OCTUBRE SANTO DOMINGO DEL CERRO LA ANTIGUA GUATEMALA

Empty Fruit Bunch (EFB) – As The Main Fuel For Palm Oil Mill Boilers

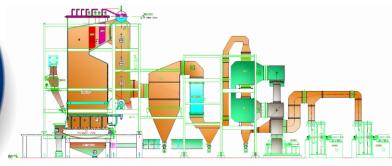
BY

Hugues Posschelle, GA Expertise, USA S.Damodaran, Thermodyne Technologies, India V.S.Bharadwaj, Thermodyne Technologies, India

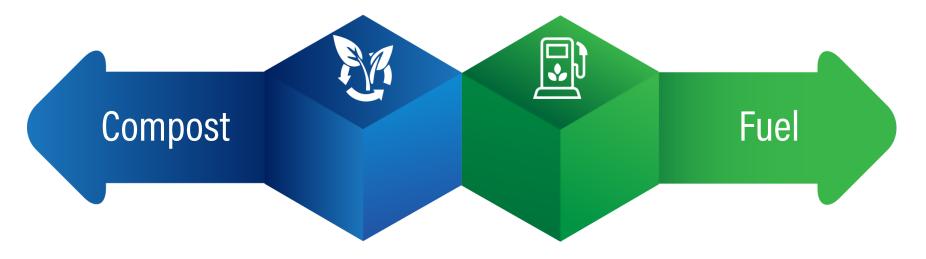
AT

GREPALMA - GUATEMALA OCTOBER 2019

EFB Fired Boilers



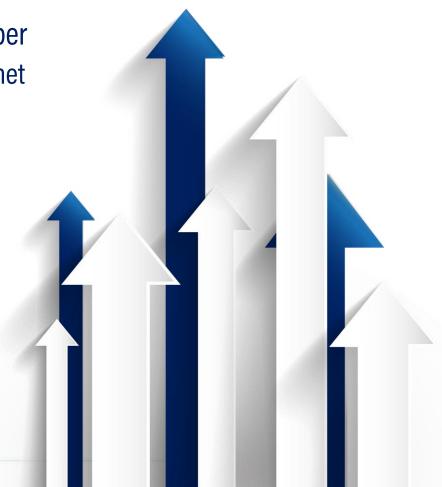
Benefits Of EFB For Power Generation



Premise

- EFB content per MT of FFB
- GCV of EFB at 75% moisture
- Typical Uses of EFB:

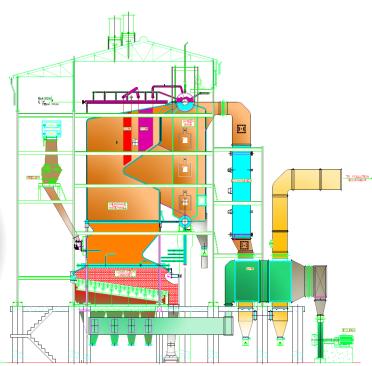
- 230 kg@ 70-75% Moisture
- 1225 Kcal/kg


Benefits Of EFB as Boiler Fuel

Benefits

- EFB utilized as a fuel has a potential to generate about 2.4 TPH of steam (when EFB moisture content is reduced to 50%)
- 1 MT of EFB used as fuel can save 430 kg of shell or 790 kg of Fiber
- Each MT of EFB has the potential to generate about 230-250 kwh of net power
 - (@ \$0.09/kwh this represents \$21 per MT of electrical revenue)
- EFB Fiber sells at \$15.00/MT while PK shell is \$75.00/MT. Sales price as a function of per MT of EFB
 - 0.13MT of EFB Fiber @ \$15/MT = \$1.95
 - 0.06MT of PK shell @ \$75/MT = \$4.50

EFB Fired Boilers



Fuel Preparation and Delivery System

EFB Fuel Preparation Objectives:

- Produce homogenized Fiber 50mm to 100mm long
- Reduce moisture content from 70% to about 50%
- Extract 50% of residual CPO in EFB

EFB Delivery System

Deliver a consistent flow of EFB Fiber to the Boiler

EFB Fuel Preparation and Delivery System

- To eliminate Green Bunches
- Typical capacity 10-12MT EFB/Hr
- Power consumption 20HP

EFB Press and Cutter

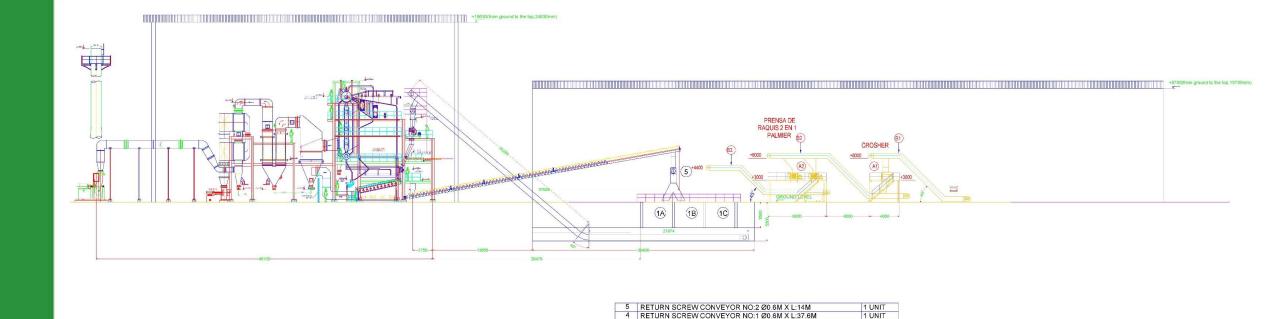
- To reduce humidity from 70% to about 50%
- To extract residual CPO (about 50% of CPO loss in EFB)
- To produce fiber 50-100mm long
- Capacity 8-10MT EFB/Hr
- Power consumption 100HP

EFB Fuel Preparation and Delivery System

The EFB Station pays itself with CPO Recuperation

Assuming 200,000 MT of RFF/Year

Fuel Retrieval and Delivery System


- EFB Storage Approx 30-40MT of EFB Fiber Storage or 2.5 3 hours of fuel for a 30T boiler
- Even Distribution of Fuel Over Discharging Opening by Dosing Roller

Fuel Preparation and Delivery System

FUEL DISTRIBUTION SCREW CONVEYOR Ø0.6M X 24M

DESCRIPTION

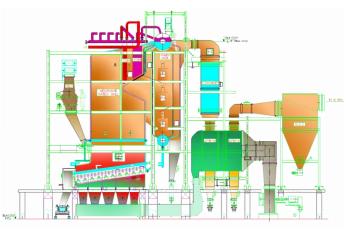
2 INCLINE CONVEYOR W:0.9M X H:0.76M X L:56,000M

1 MOVING FLOOR W:4M X H:3.5M X L:11M

2 UNITS

2 UNITS 3 SETS

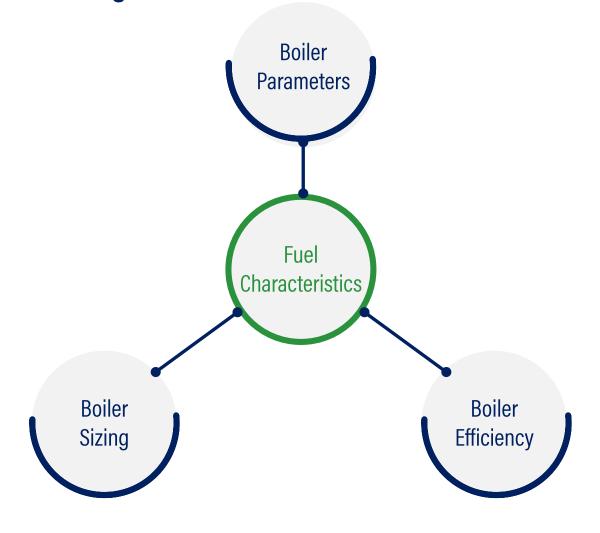
EFB Fired Boilers



End-User Input

Design Considerations

End-User Inputs



Design Considerations: Fuel is the Core

Fuel Characteristics

Proximate and Ultimate EFB Characteristics ...

Proximate Analysis – Determines How Much Of The Fuel Will Burn **Ultimate Analysis** – Provides Air Requirement, Gas Generation, And Boiler Efficiency

		Empty Fruit
		Bunch
Fixed Carbon	% wt.	8.53
Volatile Matter	% wt	37.83
Total Moisture	% wt	50.00
Ash	% wt	3.64
Higher Heating Value	kcal/kg	2445

% Weight	EFB
Total Carbon	20.4
Hydrogen	3.18
Oxygen	18.39
Nitrogen	0.31
Sulphur	0.08
Moisture	50.0
Ash	3.64
Gross Calorific Value (kcal/kg)	2445

Ash Characteristics...

To Understand a fuel's impact on boiler components

EFB Ash Characteristics...

Ash Analysis – Fusibility Temperatures

		Palm Fiber	PK Shell	Empty Fruit Bunch
Initial Deformation Temperature	o C	1120	1070	930
Softening temperature	° C	1180	1130	990
Fluid temperature	о С	1280	1290	1210

Conclusion – Need Larger Furnace to keep furnace temperature lower and minimize ash melt

EFB Ash Characteristics...

Elemental Ash Analysis-

Lingty i fait Dailoil	Empty	Fruit B	Bunch
-----------------------	--------------	---------	-------

	Limpty Fruit bullen
SiO ₂	34.70
Al_2O_3	1.20
Ca0	3.30
Fe ₂ O ₃	1.80
Mg0	2.90
Na ₂ O	0.80
K ₂ 0	40.10
S0 ₃	8.00
CO ₂	
Others	Balance

Impact: Higher level of fouling of heat transfer surfaces. Solution: need to design heat transfer sections suitably

Typical Chlorine/High Alkali Attack

Corrosion On Super Heater Tube (Gas Side)

Physical Characteristics Of Fuel

Important For Fuel Feed Control

Sizing

Bulk Density

Angle of Repose

Typical Requirement Of EFB Sizing

Recommended Sizing for spreader stoker with Travelling Grate:
Shredded Linear Sizing

- 100% < 125 mm
- 90 % < 50 mm
- 50 % < 30 mm

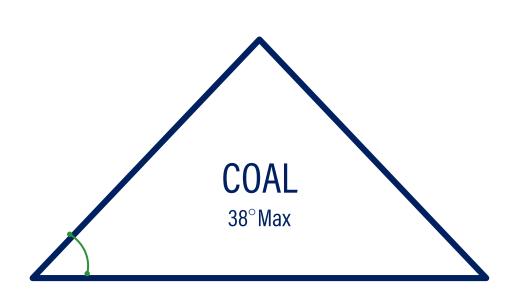
Recommended Sizing for air assisted gravity feeding with Reciprocating Grate:

- 100% < 300 mm
- 90 % < 200 mm
- 75 % < 150 mm

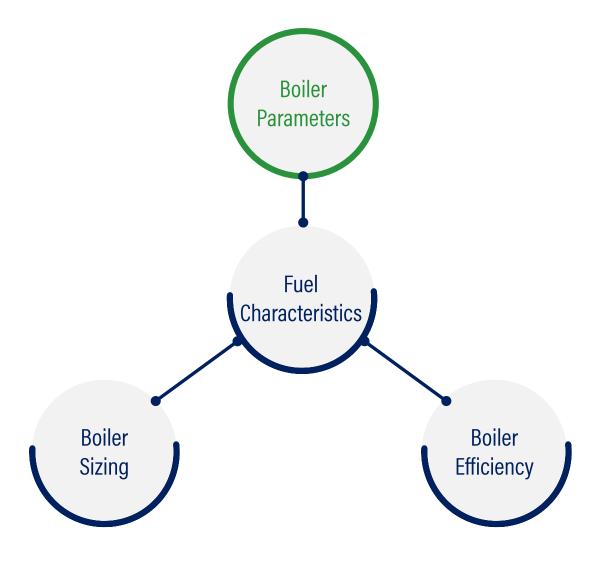
EFB Bulk Density

Bulk density:

- varies between 150 to 250 kg/m3.
- Impacts Feed Silo Sizing



Angle of Repose Storage Management & Conveying



Based on EFB fuel characteristics we recommend the following parameter

- < 45MT/Hr Reciprocating Grate with Air Assisted Gravity Feeding
- > 45MT Travelling Grate with Pneumatic Spreader Stoker

Higher steam temp. not advised due to CI presence in EFB

Pressure - 21 / 31 / 41 Bar(g)

Based on Temperature Limitations

Feed Water Temperature - 105 to 120 ° C

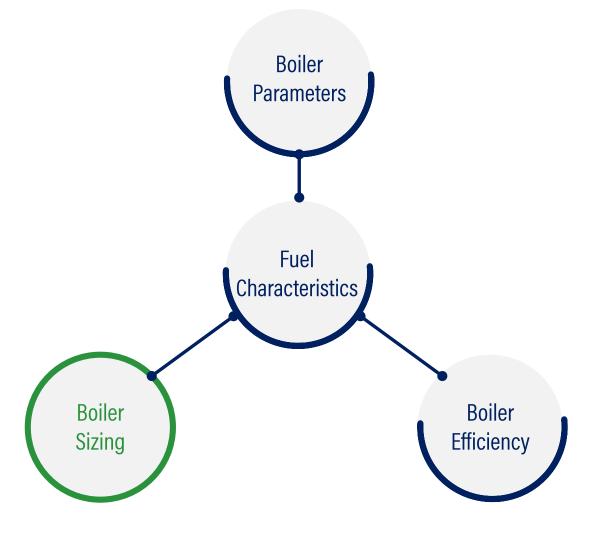
120°C is better suited to manage sulphur /chlorine corrosion issues

Boiler Efficiency: Influencing Factor

How Do We Optimize Boiler Efficiency Burning EFB Fiber

The efficiency on EFB firing is lower than other palm waste considering the following reasons:

- Fuel Granulometry: Boiler combustion system sizing with higher excess air.
- Fuel / Ash Composition: Large furnace and optimal heat transfer section sizing to manage slagging and fouling


Typical efficiencies on palm waste

- Mesocarp firing: 70-71% on GCV of fuel (at 38% moisture)
- PK shell: 80-81% on GCV of fuel (at 14% moisture)
- EFB fibre: 66-67% on GCV of fuel (at 50% moisture)

Design Considerations For Boiler Sizing

Burning EFB Fiber Impacts Sizing As Follows...

EFB Characteristic	Design Consideration
Sticky Deposits due to high Alkali	 Optimal spacing of superheater & bank tubes to reduce ash fouling Superior Steam Soot blowing System
Low softening point of Ash	 Large furnace with conservative volumetric loading Low furnace outlet gas temperature to reduce ash deposition
Increase in fouling and corrosion due to presence of Chlorine	Lower Superheater Steam Temperature

Conclusions

EFB Offers Tangible Values As A Fuel

Proper Fuel Preparation and Feeding Is Critical

EFB Fuel Characteristics Require Careful Attention To Design and Sizing Of The Boiler

THANK YOU

